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Abstract 
 

In this paper, we propose a set of advanced numerical 

methods in order to simulate foam injection-expansion 

processes in a single step. Our approach is based on a set 

of stabilized solvers for each governing equation. These 

solvers are coupled with an advanced global stabilization 

algorithm and a multi-criteria adaptive meshing 

technology. These new technologies provide realistic 

results. We present several analytical and technical 

examples to demonstrate the overall robustness. 

 

Introduction 
 

Foam injection-expansion is nowadays a very 

widespread process, as it is used in a large variety of 

domains (automotive, everyday furniture …). In high 

precision domains such as automotive, it is necessary to 

better understand and control process. The use of an 

optimized numerical tool can help to find the best 

parameters to predict final foam distribution, and 

therefore optimize injected foam mass for example. 

 

Foam injection-expansion is a complex process as 

several physical phenomena occur. Each phenomenon 

results of a complex equation and all together are highly 

coupled. Another difficulty appears in the fact that 

expansion occurs at the very beginning of the process, 

including filling step. Therefore every equation needs to 

be resolved with a high accuracy method, as a minor error 

could lead to poor final description. 

 

In our work we use stable numerical method for each 

constitutive equation resolution. We propose as well a 

global stabilization parameter based on the overall mass 

conservation. 

 

As foam injection-expansion processes are used for 

large and complex industrial parts, the use of advanced 

numerical methods is necessary to keep reasonable 

computations times. This is why we have also developed 

an anisotropic adaptive meshing technology. This 

technology enables us to improve results accuracy while 

decreasing computational time. 

 

Finally we validate our methods through simple 

analytical cases as well as a more complex industrial part. 

 

Constitutive Equations 
 

Like any polymer, polyurethane foams are driven by 

Navier Stokes and heat equations: 

 

   v
fpvvv

t

v














 2

       
(1)

 

0.  v
dt

d




 
      (2) 

where v  is the velocity field (m/s), p is the pressure field 

(Pa),   is the polymer density (kg/m
3
) and   is the 

polymer dynamic viscosity (Pa.s). 
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where T  is the temperature (
o
C), 

P
c  is the calorific 

capacity (J/K/m
3
), k  is the heat conductivity coefficient 

(W/m²) and S  is the source term (W/m
3
) corresponding 

to viscous dissipation and polymerization reaction. 

 

Gas rate produced by polymerization reaction is 

modeled by a   parameter, as introduced in [1], it 

depends on temperature and pressure: 
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 where  TK  is a function depending on local 

temperature T, and 
P

  is the foam compressibility.  

Finally, foam expansion introduces a new term in 

conservation equation: 
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Global Stabilization Method 
 

In our work, Navier-Stokes equations are stabilized 

with a P1+/P1 method [2]. Heat equation and gas rate 

evolution equation are stabilized with a SUPG method[3]. 

 

Nevertheless, some inaccuracies may occur during 

computation. These inaccuracies can result from either 

non-convergence or poor discretization. Considering the 

fact that all equations are coupled together, this can lead 

to significant final discrepancies between computation 

and reality. 

 

In order to ensure a good coherence between these 

equations, we define a global stabilization parameter 

f .This parameter is implemented in both conservation 

equation (1) and gas rate evolution equation (4): 

 

 

  (6) 

 

  (7) 

 

 

F is directly computed from discrepancy between overall 

computed mass and theoretically injected mass. For a 

optimum stability, we use a proportional et derivative 

scheme: 
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Where  is the proportional parameter (we 

chose 1.0 ),  is the derivative parameter (we 

chose t 20 ) and 
th

M  is the theoretical injected 

mass.  

 

Anisotropic Adaptive Meshing 
 

Our meshing technology is based on the so called 

“topological mesher” [4], that enables to generate highly 

anisotropic and heterogeneous meshes. Such meshes are 

very interesting for complex computations like industrial 

parts injection and expansion. Indeed, precision can be 

highly improved only in required directions (for example 

through thickness) and required zones. 

 

The anisotropic mesher is coupled with the error 

estimator developed in [5]. The error estimator computes 

an optimized metric from one or several adaptation 

functions and a number of nodes. The obtained metric 

given to the mesher generates the computational mesh. 

Figure 1 gives an example of adaptation around the 

interface: this coupled with the level set function enables 

a very sharp interface description.  

 

 

 
Figure 1. Anisotropic adaptive mesh with adaptation at the 

polymer/air  interface. 

 

Figure 2 shows that mesh can as well be refined 

following border conditions and velocity profile in order 

to improve heat transfers and flow/rheology coupling.  

 

a)  

b)  

 c)  

Figure 2. a) Isotropic homogeneous mesh; b) Refined on 

boundaries; c) Refined on boundaries and flow geometry. 

 

 
Graph 1. Pressure imposition in a tube: velocity profile 

with different mesh. 
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Graph 1 shows the results obtained for a pressure 

imposition on the left side. Adapting the mesh on 

boundaries and flow geometry greatly improves flow 

description. 

 

Analytical Validation 
 

The first case consists in a free air expansion in a 

cylindrical cavity (L=0.05m x R=0.005m). We are here 

interested in the evolution of the overall foam volume. 

Results shown on Graph 2 are compared to analytical 

data. In this case, we deliberately chose a coarse mesh to 

introduce numerical inaccuracies. 

 

 
Graph 2. Evolution of overall foam volume with stabilized 

and non-stabilized resolution. 

 

Here, the non-stabilized results show 15% 

discrepancy with the analytical results. Introducing global 

stabilization is enough to correct almost all the 

discrepancy. 

 

The second test aims to validate the pressure 

dependency in the gas rate evolution function. We study 

here foam evolution in a fully confined cavity. As the 

polymerization occurs and foam is confined, only 

pressure should evolve and gas rate should remain steady. 

 

 
Graph 3. Evolution of overall foam mass in a fully 

confined cavity. 

As the overall mass constantly decreases during the 

computation for non-stabilized case, the corrected case 

stabilizes quickly around its initial value. 

 

 

Industrial Validation 
 

In order to simulate complex industrial parts, we have 

introduced these methods in Rem3D® simulation tool [6]. 

For each simulation, injection and expansion are 

simultaneously resolved, as foam reacts from the very 

beginning of the process. 

 

We validate our method on a large industrial part 

(2x0.2x0.05m
3
) shown on Figure 3. During the two first 

seconds, a small amount (0.365kg) of non-expanded foam 

is injected into the cavity. The foam then expands and 

fills the whole cavity. 

 
Figure 3. Industrial part geometry used for validation. 

 

First, we decide to run computation with and without 

adaptive meshing in order to compare the interface aspect. 

Results are shown Figure 4. Both computation are 

launched with a 20,000 nodes mesh. 

 

 
Figure 4. Interface description with adapted mesh (left 

side) and standard mesh (right side). 

 

It appears that adaptive meshing greatly improves 

interface accuracy. 

 

In a second step, we propose to compare mass 

evolution for these two cases without global stabilization. 



 

 

 
Graph 4. Influence of mesh adaptation on the overall 

foam mass evolution, without global stabilization. 

 

It appears that both simulation show great 

discrepancy considering the injected mass. Despite of 

this, adaptive meshing shows better results than isotropic 

mesh. 

 

We now add global stabilization to these two cases. 

Graph 5 shows the results for the four simulations. 

 

 
Graph 5. Influence of mesh adaptation and global 

stabilization on the overall foam mass evolution. 

 

Finally, the stabilized adaptive meshing gives the 

most accurate description, as global stabilization is not 

sufficient to correct results obtained with the isotropic 

mesh. 

 

Conclusions 
 

In this paper, we have presented the different coupled 

equations driving foam injection-expansion. We have 

proposed a new global stabilization method in order to 

ensure a good coherence between all the phenomena. 

 

In a second step, we presented our multi criteria 

adaptive meshing. This method enables us to improve 

accuracy while reducing computation time. 

 

Finally, we used several analytical and industrial 

cases to demonstrate the overall code robustness and 

precision. 

 

References 
 

1. J. Bikard, J. Bruchon, T. Coupez and L. Silva, 

Numerical simulation of 3D polyurethane expansion 

during manufacturing process, Colloids and Surfaces 

A : Physicochemical and Engineering Aspects, 309(1-

3):49–63 (2007). 

2. D.N. Arnold, F. Brezzi, and M. Fortin, A stable finite 

element for the stokes equations,  Calcolo, 21 (1983). 

3. R. Codina, Comparison of some finite element 

methods for solving the diffusion-convection-reaction 

equation, Computer Methods in Applied Mechanics 

and Engineering, 156(1-4):185–210 (1998). 

4. T. Coupez, H. Digonnet, R. Ducloux, Parallel 

meshing and remeshing, Applied Mathematical 

Modelling, 25:153–175 (2000). 

5. T. Coupez, Metric construction by length distribution 

tensor and edge based error for anisotropic adaptive 

meshing, Journal of Computational Physics, 

230:2391–2405 (2011). 

6. G. François, Multi criteria adaptive meshing for 

polymers processing in Rem3D
®
, 30

TH
 Polymer 

Processing Society (2014). 

 

 


